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Within the field of linguistic fuzzy modeling with fuzzy rule-based systems, the automatic der-
ivation of the linguistic fuzzy rules from numerical data is an important task. In the last few
years, a large number of contributions based on techniques such as neural networks and genetic
algorithms have been proposed to face this problem. In this article, we introduce a novel approach
to the fuzzy rule learning problem with ant colony optimization (ACO) algorithms. To do so,
this learning task is formulated as a combinatorial optimization problem. Our learning process
is based on the COR methodology proposed in previous works, which provides a search space
that allows us to obtain fuzzy models with a good interpretability–accuracy trade-off. A specific
ACO-based algorithm, the Best–Worst Ant System, is used for this purpose due to the good
performance shown when solving other optimization problems. We analyze the behavior of the
proposed method and compare it to other learning methods and search techniques when solving
two real-world applications. The obtained results lead us to remark the good performance of our
proposal in terms of interpretability, accuracy, and efficiency. © 2005 Wiley Periodicals, Inc.

1. INTRODUCTION

Fuzzy rule-based systems (FRBSs) currently constitute one of the most impor-
tant areas for the application of fuzzy set theory. These systems are an extension of
classical rule-based systems, because they deal with fuzzy rules instead of classi-
cal logic rules. From this point of view, a very interesting application of FRBSs is
system modeling,1 which in this field may be considered as an approach used to
model a system making use of a descriptive language based on fuzzy logic with
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fuzzy predicates.2 In this framework, an important area is linguistic fuzzy model-
ing, where the interpretability of the obtained model is the main requirement. This
task is developed by means of linguistic FRBSs, which use fuzzy rules composed
of linguistic variables3 that take values in a term set with a real-world meaning.
Thus, the linguistic model consists of a set of linguistic descriptions regarding the
behavior of the system being modeled.2

The task of automatically defining the fuzzy rules included in an FRBS for a
concrete application is considered as a hard problem and a large number of meth-
ods have been proposed to generate the involved rules from numerical data mak-
ing use of different techniques such as ad hoc data-driven methods,4 neural
networks,5 genetic algorithms,6 fuzzy clustering,7 and so forth.

We should say that the two most important requirements in fuzzy modeling
are the following:8,9

• Interpretability—This refers to the capability of the fuzzy model to express the behav-
ior of the system in a understandable way. This is a subjective property that depends on
several factors, the number of fuzzy rules being one of the most important.

• Accuracy—This refers to the capability of the fuzzy model to faithfully represent the
modeled system. The closer the model to the system, the higher its accuracy. As close-
ness we understand the similarity between the responses of the real system and of the
fuzzy model.

Along with these two aspects, the speed of the fuzzy rule derivation process
is also of main importance. Indeed, a quick learning has some interesting advan-
tages like the capability of being used as a previous mechanism to understand the
features of the problem being solved, being used as a first learning stage to sub-
sequently refine the obtained results with a more complex postprocessing,10 being
integrated within a meta-learning process,11 and so forth.

In this contribution, we propose a novel approach to the fuzzy rule learning
problem based on the Cooperative Rules (COR) methodology12 and making use
of ant colony optimization (ACO) algorithms to find a good balance between the
three mentioned requirements (interpretability and accuracy of the obtained fuzzy
models, and quickness of the learning process).

ACO13–15 is a new paradigm of bio-inspired algorithms that has shown very
good behavior when solving hard combinatorial optimization problems such as
the traveling salesman problem or the quadratic assignment problem (QAP). The
main advantage of this technique is the global search guided by heuristic and memo-
ristic information in a very efficient way that it applies.

To apply ACO algorithms to the fuzzy rule learning problem, it must be for-
mulated as a combinatorial optimization problem and the features related to ACO
algorithms—such as heuristic information, pheromone initialization, fitness func-
tion, solution construction, and pheromone update—must be introduced.

To do so, the COR methodology may be used. This methodology proposes to
perform the learning task in two steps: first, a search space construction is per-
formed and then, a selection of the most cooperative fuzzy rule set is carried out
guided by a global error measure.
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Because heuristic information on the local goodness of each consequent to
each rule is available, ACO algorithms properly fit into this methodology, profit-
ing from this kind of information to perform a better search and to increase the
convergence speed, thus generating interpretable and accurate fuzzy models quickly.
The Best–Worst Ant System (BWAS) algorithm16 is used in this article due to the
good performance shown when solving other optimization problems.17,18

The article is structured as follows. Section 2 describes the COR methodol-
ogy. Section 3 briefly introduces ACO and BWAS. Section 4 describes all the
aspects related to applying the BWAS model to the COR methodology. Section 5
analyzes the behavior of the proposed method when solving two real-world appli-
cations, comparing it to other well-known fuzzy rule generation processes. Finally,
Section 6 points out some concluding remarks.

2. COR: COOPERATIVE RULES METHODOLOGY

A family of efficient and simple methods to derive fuzzy rules guided by
covering criteria of the data in the example set, called ad hoc data-driven methods,
has been proposed in the literature in the last few years.12 Their high performance,
in addition to their quickness and easy understanding, make them very suitable for
fuzzy rule learning tasks.

However, ad hoc data-driven methods usually look for the fuzzy rules with
the best individual performance (e.g., Ref. 19) and therefore the global interaction
among the rules is not considered. This sometimes causes fuzzy rule sets to be
obtained with bad cooperation among the rules composing them, making the fuzzy
model not as accurate as desired.

With the aim of addressing these drawbacks, keeping the interesting advan-
tages of ad hoc data-driven methods, a new methodology to improve the accuracy
obtaining better cooperation among the rules is proposed in Ref. 12: the COR
methodology. Instead of selecting the consequent with the highest performance in
each subspace like ad hoc data-driven methods usually do, the COR methodology
considers the possibility of using another consequent, different from the best one,
when it allows the FRBS to be more accurate, thanks to having a fuzzy rule set
with better cooperation.

COR consists of two stages:

1. Search space construction—where a set of candidate rules is obtained for each fuzzy
input subspace.

2. Selection of the most cooperative fuzzy rule set—where a combinatorial search is per-
formed among these sets looking for the combination of rules with the best global
accuracy.

In this article, we also include an enhancement to the original proposal12 to
allow it to eliminate badly defined and conflicting rules with the aim of improving
the interpretability (less number of rules) and the accuracy (better cooperation
among rules). This approach, the fuzzy rule set reduction, is a regular practice in
fuzzy modeling usually achieved by genetic algorithms.10,20,21 These proposals
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generally perform the reduction with a postprocessing stage, once the rule set has
been derived. Our proposal will achieve the reduction process at the same time as
the learning one to address the existing interdependence between both processes.

To do so, the special element R� (which means “don’t care”) is added to the
candidate rule set corresponding to each subspace. In this way, if such an element
is selected for a specific subspace, this will mean that no rule belonging to this
subspace will take part in the fuzzy rule set finally learned. This slight change in
the COR methodology evidently involves increasing the search space with the
known pros and cons: more accurate and interpretable solutions can be obtained
but the difficulty of finding good solutions increases.

A wider description of the COR-based rule generation process including the
fuzzy rule set reduction mechanism is shown in Figure 1.

Within the COR methodology, it is possible to follow two different approaches
depending on the maximum number of rules and on the search space size we want
to tackle:

• Interpretability approach—If the steps 1.1.1 and 1.2.1 in the algorithm shown in Fig-
ure 1 are considered, a lesser number of rules is generated and a narrower search space
is explored. It involves making sacrifices in the accuracy for generating a reduced num-
ber of rules. According to the taxonomy performed in Ref. 12, this approach is guided
by examples.

• Accuracy approach—However, if steps 1.1.2 and 1.2.2 are used, a wider search space is
tackled with the subsequent accuracy improvement, but a higher number of rules will be
obtained. According to the taxonomy performed in Ref. 12, this approach is guided by
fuzzy grid.

Thus, depending on the problem nature (main requirement on the obtained
fuzzy model, number of variables, number of linguistic terms, size and distribu-
tion of the example data set, difficulty to obtain accurate models, etc.), we should
opt for one of the two mentioned approaches.

Regardless of which approach is followed, because the search space tackled
in step 2 is usually large, it is necessary to use approximate search techniques
(metaheuristics22 ). In this article, an efficient and accurate technique based on the
BWAS algorithm is proposed.

3. INTRODUCTION TO ANT COLONY OPTIMIZATION

ACO algorithms13 constitute a new family of global search bio-inspired algo-
rithms that has been recently proposed. Since the first proposal, the ant system
algorithm23—applied to the traveling salesman problem—numerous models have
been developed to solve a wide set of optimization problems (refer to Refs. 14, 15,
and 24 for a review on models and applications).

ACO algorithms draw inspiration from the social behavior of ants to provide
food to the colony. In the food search process, consisting of the food finding and
the return to the nest, ants deposit a substance called a pheromone. Ants have the
ability to smell the pheromone and pheromone trails guide the colony during the
search. When an ant is located at a branch, it decides to take the path according to
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Figure 1. COR algorithm.
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a probability defined by the amount of pheromone existing in each trail. In this
way, the depositions of the pheromone terminate in constructing a path between
the nest and the food that can be followed by new ants. The progressive action of
the colony members makes the length of the path reduced step by step. The short-
est paths are finally the more frequently visited ones and, therefore, the phero-
mone concentration is higher on them. Conversely, the longest paths are less visited
and the associated pheromone trails are evaporated.

The basic operation mode of ACO algorithms is as follows:23 At each itera-
tion, a population of a specific number of ants progressively construct different
tracks on a graph representing the problem instance (i.e., solutions to the problem)
according to a probabilistic transition rule that depends on the available informa-
tion (heuristic information and pheromone trails). After that, the pheromone trails
are updated. This is done by first decreasing them by some constant factor (corre-
sponding to the evaporation of the pheromone) and then reinforcing the attributes
of the constructed solutions considering their quality. This task is developed by
the global pheromone trail update rule.

Several extensions to this basic operation mode have been proposed. Their
improvements mainly consist of using different transition and update rules, intro-
ducing new components, or adding a local search phase.25–27

One of these successful approaches is the BWAS model.16 It tries to improve
the performance of ACO models using evolutionary algorithm concepts like the
update rule based on that of the Population-Based Incremental Learning28,29 (con-
sidering the global-best and the worst current solutions) or the pheromone trail
mutation to introduce diversity in the search. A global scheme of the BWAS algo-
rithm is shown in Figure 2.

To solve a specific problem by ACO algorithms, the five steps shown in Fig-
ure 3 have to be performed.24 The following section describes these aspects par-
ticularized to the COR methodology.

Figure 2. BWAS algorithm.
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4. BEST–WORST ANT SYSTEM TO LEARN
LINGUISTIC FUZZY RULES

COR is characterized by its flexibility to be used with different meta-
heuristics. In Ref. 12, successful linguistic models were obtained using simulated
annealing. Nevertheless, these results could be improved incorporating heuristic
information to the learning process. This consideration would guide the algorithm
in the search, making it more efficient and effective at finding good solutions.
ACO is a good support for such an intention thanks to the inherent use of heuristic
information. Therefore, this section describes the use of ACO, more specifically
the BWAS model, in the COR methodology. To do so, the following five subsec-
tions present the different components of the proposed algorithm according to the
scheme shown in Figure 3.

4.1. Problem Representation for Learning Cooperative Fuzzy Rules

To apply ACO in the COR methodology, it is convenient to see it as a combi-
natorial optimization problem with the capability of being represented on a weighted
graph. In this way, we can face the problem considering a fixed number of sub-
spaces and interpreting the learning process as the way of assigning consequents—
that is, labels of the output fuzzy partition—to these subspaces with respect to an
optimality criterion (i.e., following the COR methodology).

Hence, we are in fact dealing with an assignment problem and the problem
representation can be similar to the one used to solve the QAP,30 but with some
peculiarities. We may draw an analogy between subspaces and locations and
between consequents and facilities. However, unlike the QAP, the set of possible
consequents for each subspace may be different and it is possible to assign a con-
sequent to more than one subspace (two rules may have the same consequent). We
can draw from these characteristics that the order of selecting each subspace to be

Figure 3. Steps followed to apply ACO algorithms to a specific problem.
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assigned a consequent is not determinant because one assignment does not restrict
the remaining ones, that is, the assignment order is irrelevant.

Therefore, according to Figure 1, each node Sj � S� is assigned to each can-
didate consequent Bk � C~Sj ! and to the special symbol “don’t care” that stands
for the absence of rules in such a subspace.

Figure 4 shows an example of the learning process. In Figure 4c, the possible
consequents for each antecedent combination are shown according to the data set
and membership functions considered (Figure 4a). To construct a complete solu-
tion, an ant iteratively goes over each rule and chooses a consequent with a prob-
ability that depends on the pheromone trail tij and the heuristic information hij

associated to each decision, as usual (see Figure 4d). As said, the order of select-
ing the rules is irrelevant. Figure 4e, f shows the fuzzy rule set encoded by a spe-
cific solution.

4.2. Heuristic Information

The heuristic information on the potential preference of selecting a specific
consequent, Bk , in each antecedent combination (subspace) is determined as
described in Figure 5.

4.3. Pheromone Initialization

The initial pheromone value of each assignment is obtained as follows:

t0 �
1

6S� 6 (Sj�S�

max
Bk�C~Sj !

hjk

In this way, the initial pheromone will be the mean value of the path constructed
taking the best consequent in each rule according to the heuristic information (a
greedy assignment).

4.4. Fitness Function

The fitness function will be the MSE, defined in Figure 1.

4.5. Ant Colony Optimization Scheme:
Best–Worst Ant System Algorithm

Once the previous components have been defined, an ACO algorithm has to
be given to solve the problem. In this contribution, the BWAS algorithm16 is con-
sidered. The next subsections introduce its operation mode (see Figure 2) adapted
to the fuzzy rule learning problem.
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Figure 4. COR-based ACO learning process for a simple problem with two input variables
~n � 2! and three labels in the output fuzzy partition ~6B6� 3!: (a) Data set ~E ! and membership
functions previously defined; (b) The six examples are located in four ~6S�6� 4! different sub-
spaces that determine the antecedent combinations and candidate consequents of the rules;
(c) Set of possible consequents for each subspace, including the special element “don’t care”
(dc); (d) Graph constructed to explore the search space consisting of 72 different combinations
of rules by means of the ACO algorithm; (e) Rule decision table for a possible solution to the
problem; (f ) Fuzzy rule set generated from this combination.
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4.5.1. Solution Construction Process

In the BWAS algorithm, at each construction step, the solution is built assign-
ing a consequent to a rule with a probability given by the transition rule

p~ j, k! � �
~tjk !

a{~hjk !
b

(
Ru�CR~Sj !

~tju !
a{~hju !

b
, if Rk � CR~Sj !

0, otherwise

with tjk being the pheromone of the edge ~ j, k! (i.e., the pheromone associated
with the decision of assigning consequent Bk to the subspace Sj !, hjk being the
heuristic information, and a and b being parameters that determine the relative
influence of the pheromone trail and the heuristic information.

We should note that, as in the QAP, the transition rule becomes an assignment
rule but, contrary to that problem, there is not a need for the ant to keep a tabu list
with the previous assignments made, because the same consequent can be assigned
to different rules.

4.5.2. Pheromone Evaporation Mechanism

The pheromone evaporation is done according to the following formula:

tjkR ~1 � r!{tjk ,∀j,∀k

with r � @0,1# being the pheromone evaporation parameter.

Figure 5. Heuristic assignment process.
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4.5.3. Local Search Process

One of the most usual ways to improve the performance of ACO algorithms
is the use of local search techniques.26,27,30 This approach entails employing a
local optimization technique to refine the solutions obtained after one or several
iterations.

Despite the use of local search procedures that usually improves the efficacy
of the ACO algorithm, it increases the number of evaluations at each iteration and
therefore the runtime of the learning method, thus losing efficiency. Moreover, we
must consider that in the fuzzy rule learning problem, opposite to other applica-
tions, the time needed to evaluate a neighboring solution is greater than the one
needed to construct a new solution.

In ACO, the local search technique is usually applied to the solution gener-
ated by each ant in each iteration. However, due to the time restrictions imposed in
the fuzzy rule learning problem and to keep the high speed of the proposed learn-
ing approach, the local search process will only be applied to the best solution
generated at each iteration in our case. After this process, the global pheromone
trail is updated in the usual way (see Section 4.5.4).

The proposed local search will consist of the simple hill-climbing algorithm
described in Figure 6.

Figure 6. Local search process used in the BWAS algorithm.
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4.5.4. Best–Worst Pheromone Trail Update Rule

The pheromone trail update is done according to the following formula:

tjkR tjk � Dtjk

where

Dtjk � � 1

MSE~FRSglobal best !
, if ~ j, k! � Tglobal best

0 otherwise

with Tglobal best being the global-best track solution and FRSglobal best being its cor-
responding fuzzy rule set.

Then, all the edges existing in the current-worst path solution, Tcurrent worst ,
that are not present in the global-best one are penalized by another decay of the
pheromone trail associated—an additional evaporation—performed as follows:

∀~ j, k! � Tcurrent worst and ~ j, k! � Tglobal best ,tjkR ~1 � r!{tjk

4.5.5. Pheromone Trail Mutation

Each row of the pheromone matrix is mutated—with probability Pm—by add-
ing or subtracting the same amount of pheromone to the selected trail (a value that
depends on the current iteration) as follows:

tjk
' � �tjk � mut~it,tthreshold !, if a � 0

tjk � mut~it,tthreshold !, if a � 1

with a being a random value in $0,1%, it being the current iteration, tthreshold being
the average of the pheromone trail on the edges composing the global-best solu-
tion, and with mut~{! being

mut~it,tthreshold ! �
it � itr

Nit � itr

{s{tthreshold

where Nit is the maximum number of iterations of the algorithm and itr is the last
iteration where a restart was performed.

We should mention that the mut~{! function does not prevent pheromone val-
ues from being negative. Hence, there is a need to check their correction after each
application of this component.

4.5.6. Restart of the Search Process When It Gets Stuck

The algorithm will perform the restart by setting all the pheromone matrix
components to t0, the initial pheromone value, when the global-best solution is
not improved during a fixed number of iterations.
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5. EXPERIMENTAL STUDY

This section shows and analyzes some experimental results obtained by
the previously presented COR-based method using the BWAS algorithm
(COR-BWAS). We have selected five related methods to compare their perfor-
mance with our proposal:

• The first one, proposed by Wang and Mendel,19 is a simple algorithm that, although it
does not obtain good accuracy results, is a traditional reference in the area.

• The second process, proposed by Nozaki et al.,31 uses linguistic fuzzy rules with double
consequents and weights associated to them to improve the fuzzy model performance.

• The third one, proposed by Thrift,32 is a classical fuzzy rule set learning method based
on genetic algorithms.

• Moreover, two COR-based methods based on a simulated annealing algorithm12 and on
the ant colony system algorithm33 (the latter considering the same restart and local search
procedures used in the COR-BWAS method) are also applied to analyze the perfor-
mance of the BWAS-based approach.

In every analyzed method, we will consider uniformly distributed fuzzy par-
titions with symmetrical triangular membership functions crossing at height 0.5
(as shown in Figure 7) within the corresponding domain for each variable.

The analyzed methods have been applied to two different real-world prob-
lems. A fivefold cross validation is performed. Thus, each data set is divided into
five subsets of (approximately) equal size. Each algorithm is applied five times for
each problem, each time leaving out one of the subsets from training, but using
only the omitted subset to compute the test error.a In the probabilistic algorithms,
six runs with different seeds for the pseudorandom sequence are made for each
data partition. Therefore, it involves 30 different runs of each algorithm for each
problem. With this experimental setup that uses public real-world problems and
cross-validation with multiple runs, we try to perform a sound experimental study,

aThe data sets used in these experiments are available at http://decsai.ugr.es/;casillas/
FMLib/

Figure 7. Graphical representation of a fuzzy partition with five linguistic terms, Sst standing
for smallest, S for small, M for medium, L for large, and Lst for largest, and with @l, r# being the
corresponding variable domain.
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more rigorous than those usually performed by the fuzzy modeling community as
remarked in Ref. 34.

Table I collects the main characteristics of the two analyzed real-world prob-
lems, where #V stands for the number of input variables, #E for the number of
available examples, and #LT for the number of linguistic terms considered for
each fuzzy partition. These applications are briefly described in the two following
subsections. After that, the obtained results and an analysis of them are introduced
in Sections 5.4 and 5.5.

5.1. The Electrical Low Voltage Line Length Problem

This problem involves finding a model that relates the total length of low
voltage line installed in Spanish rural towns.35 This model was used to estimate
the total length of line being maintained by an electrical company in 1999. We
were provided with a sample of 495 towns in which the length of line was actually
measured and the company used the model to extrapolate this length to more than
10,000 towns with these properties. We limit ourselves to the estimation of the
total length of low voltage line installed in a town, given the inputs number of
inhabitants of the town and distance from the center of the town to the three fur-
thest clients. Seven labels are considered for each linguistic variable.

5.2. The Medium Voltage Electrical Network Maintenance Costs Problem

Estimating the maintenance costs of an electrical network in a town35 is a
complex but interesting problem. Because an actual measure is very difficult to
obtain when medium or low voltage lines are used, the consideration of models
becomes useful. These estimations allow electrical companies to justify their
expenses. Moreover, the model must be able to explain how a specific value is
computed for a certain town. That time, our objective was to relate the mainte-
nance costs of medium voltage line with the following four variables: sum of the
lengths of all streets in the town, total area of the town, area that is occupied by
buildings, and energy supply to the town. We dealt with estimations of minimum
maintenance costs based on a model of the optimal electrical network for a town.
We were provided with a sample of 1056 simulated towns. Five linguistic terms
for each variable are considered.

5.3. Parameter Values Used

As regards the values of the parameters used in Nozaki et al.’s method, a�1
is considered to avoid membership function changes and make a fair comparison

Table I. Summary of the two applications considered.

Application #V #E #LT

Electrical line length 2 495 7
Electrical maintenance costs 4 1056 5
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with the rest of fuzzy rule learning methods. In Thrift’s method, a population size
of 61 individuals, 1000 generations, 0.6 as crossover probability, and 0.2 as muta-
tion probability per chromosome were used.

For the three analyzed COR-based methods, the accuracy approach
(steps 1.1.2 and 1.2.2) was chosen for the electrical line length problem and the
interpretability approach (steps 1.1.1 and 1.2.1) was used in the electrical mainte-
nance costs problem. See Section 2 for more details. The decision was made attend-
ing to the maximum number of fuzzy input subspaces generated by each approach
for each problem due to the training example data distribution. Although the inter-
pretability approach generates 22 and 66 subspaces on average for the electrical
line length and the maintenance costs problems, respectively, the accuracy approach
generates 30 and 268 subspaces.

A previous experimentation with different combinations of parameter values
over a specific data partition for each problem was developed in order to define
the values producing the best behavior. In the COR-SA method, different initial
temperatures between 50 to 5000 were tested. In the ACO-based methods, the fol-
lowing possibilities was considered: hjk � $H1, H2, H3 % , r� $0.2, 0.4, 0.6, 0.8% ,
a� $1,2% , b� $1,2% . The rest of the parameters were not varied. From this study,
the following values were defined.

In the COR-SA method, the parameter values were: 2,000 as initial tempera-
ture, the maximum number of neighbors and the maximum number of acceptances
were set to the number of initial fuzzy input subspaces generated by the COR
methodology for each problem (30 on average in the electrical line length problem
following the accuracy approach and 66 on average in the electrical maintenance
costs problem following the interpretability approach), and 0.9 as exponential cool-
ing factor. See Ref. 12 for the meaning of these parameters.

In the COR-ACS method, the values of parameters were: 50 iterations, a num-
ber of ants equal to the number of initial fuzzy input subspaces, H3 as heuristic
information (see Section 4.2), r� 0.2 and r� 0.8, respectively, for each problem,
a�1 and a� 2, respectively, for each problem, b�1, q0 � 0.6, LSi �10, a value
of LSn equal to the number of initial fuzzy input subspaces, and a number of iter-
ations without improvement before performing restart equal to 5.

In the COR-BWAS method, the values selected for the parameters were: 50
iterations, a number of ants equal to the number of initial fuzzy input subspaces,
H2 and H1 as heuristic information, respectively, for each problem, r� 0.8, a� 2,
b � 2, and b � 1, respectively, for each problem, Pm � 0.3, s � 4, LSi � 10, a
value of LSn equal to the number of initial fuzzy input subspaces, and a number of
iterations without improving the results before performing restart equal to 5.

5.4. Results

Tables II and III collect the results obtained by the analyzed learning methods
for each problem, where #R stands for the number of rules, MSEtra and MSEtst for
the values of the MSE over the training and test data sets, respectively, and EBS
for the number of evaluations needed to obtain the best solution. The values shown
for MSEtra , MSEtst , and EBS are rounded to the closer integer value. The arithme-
tic mean ~ Sx! over the 30 runs performed, the standard deviation over the five mean
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values ~s Sxi
!, one per data partition, and the arithmetic mean of the standard devi-

ation values over the six runs for each data partition ~ Tsxi
! are included. The best

results for each problem are shown in boldface.
Whereas s Sxi

stands for the differences existing among the data partitions, Tsxi

stands for the differences existing among the runs for each data partition. There-
fore, the former value shows the robustness of the learning method to obtain sim-
ilar results regardless of the data partition, whereas the latter value shows the
robustness of the metaheuristic to obtain similar results regardless of the followed
pseudorandom sequence.

5.5. Analysis of the Obtained Results

From the obtained results, we can verify the good behavior of the COR-
BWAS method. It obtains very good accuracy degrees in both problems. More-
over, this precision is attained using a lesser number of rules than the rest of the
analyzed methods, which notably improves the interpretability of the obtained lin-
guistic fuzzy models.

More specifically, we will analyze its performance from three different points
of view: interpretability and accuracy, robustness, and quickness.

Interpretability and accuracy. Focusing on the COR-based proposals shown,
we can see how the fact of using a specific search algorithm affects the interpret-
ability and accuracy degrees of the obtained models. The BWAS technique shows
the best behavior performing a better search process that allows it to access better
solutions than the simulated annealing and ant colony system ones. Indeed, the
COR-BWAS method obtains the models with the best interpretability (#R) and
accuracy degrees (MSEtra and MSEtst ! in both problems among the three COR-
based methods.

Compared with the NIT method, the COR-BWAS method obtains more accu-
rate and interpretable models in the electrical line length problem, whereas less
accurate models are obtained in the electrical maintenance costs problem. How-
ever, our method obtains models with many fewer rules, which significantly
improves the interpretability. Moreover, whereas the former method needs to use
weighted double-consequents rules to attain the shown accuracy, our method obtains
models with simple, but cooperative linguistic fuzzy rules.

Opposite to Thrift’s method, COR-BWAS obtains significantly smaller fuzzy
rule sets (69% and 93%, respectively, for each problem) and good accuracy. We
must note the results obtained by our method in the electrical line length problem,
where even as the search space tackled by Thrift’s method includes that managed
by our method, the best solutions are found with the latter.

This fact relates to the good exploration of the search space achieved by our
method that performs a reduction of the possible solution set and includes a smart
use of the heuristic information during the search. Nevertheless, in the electrical
maintenance costs problem, the fuzzy models obtained by our method do not show
accuracy degrees as good as the ones obtained by Thrift’s method.
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Robustness. As regards the robustness of the analyzed method, we can note
the good s Sxi

and Tsxi
values obtained by the COR-BWAS method. It obtains the

best degrees in #R, MSEtra , and MSEtst among the probabilistic methods (Thrift
and COR-based methods). This fact shows that our method is less sensitive to the
data partition ~s Sxi

! and to the pseudorandom sequence ~ Tsxi
! than the remainder.

Quickness. Finally, we may analyze the quickness of each learning process
by comparing the number of fitness function evaluations needed to find the solu-
tion finally returned by the optimization algorithm. Thus, comparing Thrift’s method
with the COR-based methods, we can verify that the latter ones not only obtain
accurate and interpretable models, but they also generate them far more quickly
than Thrift’s method. The COR-BWAS method is the slowest among the three
COR-based ones. This is due to the fact that our proposal makes a deeper search
process that delays its convergence.

Nonetheless, the COR-BWAS method appears to be 79% and 57% quicker
than the genetic algorithm-based Thrift’s method for the electrical line length and
maintenance costs problems, respectively. The quickness is an interesting aspect
when several learning methods are hybridized to perform a more sophisticated
modeling process and makes the COR methodology very suitable for such purposes.

6. CONCLUDING REMARKS

This contribution has presented a novel and interesting application of ACO to
the fuzzy rule learning problem. To do so, the learning task has been formulated as
a combinatorial optimization problem following the COR methodology. For a bet-
ter search exploration, a method using the ACO-based BWAS technique has been
proposed.

Its proper fit to the fuzzy rule learning problem has been shown when solving
two real-world problems. Compared to other learning approaches, significantly
good models have been obtained by the proposed method. Our proposal has been
shown to properly address the interpretability–accuracy trade-off by obtaining very
compact and accurate linguistic fuzzy models.
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